CIS 422/522

Designing the Module Structure

Designing a module structure
Address Book exercise

§ s
WHY DID H YOU ALWAYS |¢
YOU ADD : WHY SUGGEST 3] o o
THIS BUTTON WOULD _RANDOM |3 .
TotHeUseR O[3l TTELL cHances To |¥] REMOVE ONRON
Gz e Y CREATE |E| THAT
INTERFACE? il “you AT P
)) | THAT? THE TLLUSION |§ g
T (OF ADDING 3 \ 57
A\b ! PSS 3 VALUE 3 p L
’ — H H B 5,,;
_'E«,Lg S

CIS 422/522 Winter 2014

Architecture Design Process

Building architecture to address business goals:
. Understand the goals for the system

2. Define the quality requirements

3. Design the architecture

1. Views: which architectural structures should we use?
(goals<->architectural structures<->representation)

2. Documentation: how do we communicate design decisions?
3. Design: how do we decompose the system?
4. Evaluate the architecture (is it a good design?)

—_

CIS 422/522 Winter 2014

Modularization

» For any large, complex system, must divide
the coding into work assignments (WBS)
» Each work assignment is called a “module”
* Properties of a “good” module structure
— Parts can be designed independently
— Parts can be tested independently
— Parts can be changed independently
— Integration goes smoothly

CIS 422/522 Winter 2014

What is a module?

CIS 422/522

+ Concept due to David Parnas (conceptual basis for
objects)
+ A module is characterized by two things:

— lts interface: services that the module provides to other parts
of the systems

— lts secrets: what the module hides (encapsulates). Design/
implementation decisions that other parts of the system
should not depend on

+ Modules are abstract, design-time entities

— Modules are “black boxes” — specifies the visible properties
but not the implementation

— May, or may not, directly correspond to programming
components like classes/objects

« E.g., one module may be implemented by several objects

CIS 422/522 Winter 2014

Notional Modules

Problem

— / \
Encapsulated

Interface

Comrﬂc: _ | nterface € - - >
- Encapsulated
Users
Creator
CIS 422/522 Winter 2014

Designing the Module Structure

How do we design to arrive at the
desired qualities?

CIS 422/522 Winter 2014

Decomposition Strategies Differ

CIS 422/522

How do we develop this structure so that the leaf
modules make independent work assignments?
Many ways to decompose hierarchically

— Functional: each module is a function

— Pipes and Filters: each module is a step in a chain of
processing

— Transactional: data transforming components

— OOD: use case driven development

Different approaches result in different kinds of
dependencies

CIS 422/522 Winter 2014

Use Case Driven OO Process

Address book design: in-class exercise
Requirements
Problem Analysis
— ldentify use cases from requirements
— Identify domain classes operationalizing use cases (apply
heuristics)
OO Design (refinement)
— Allocate responsibilities among classes
+ CRC Cards (Class-Responsibility-Collaboration)
— Identify object interactions supporting use cases
* Sequence or Interaction Diagram for each scenario
— Identify supporting classes (& associations)
« Design Class Diagram, relations
Detailed Design
— Design class interfaces (class attributes and services)

CIS 422/522 Winter 2014

Decomposition Heuristics

Heuristics: suppose we create objects by ...
— Underline the nouns

— Identify causal agents

— Identify coherent services

— Identify real-world items

— ldentify physical devices

— Identify essential abstractions
— ldentify transactions

— Identify persistent information
— Identify visual elements

— Identify control elements

— Execute scenarios

CIS 422/522 Winter 2014

Address Book Design Exercise

+ Is this a good design?

— Walk through the handout to understand how the

design is derived
* Understand how use-case-driven OO design works

— Walk through the design’s class diagram and UML
class specifications to understand the structure
and function of the design

— Discuss the good and bad points of the design to
arrive a team judgment

— Justify your answer: what is good about it (or bad)
and why? What is the role of the MVC pattern?

CIS 422/522 Winter 2014

CIS 422/522

General OO Objectives

Manage complexity

Improve maintainability

Improve stakeholder communication
Improve productivity

Improve reuse

Provide unified development model
(requirements to code)

CIS 422/522 Winter 2014

General OO Principles

Principles provided to support goals
« Abstraction and Problem modeling
— Development in terms of problem domain
— Supports communication, productivity
« Generalization/Specialization (type of abstraction)
— Inheritance of shared attributes & Delayed Binding (polymorphism)
— Support for reuse, productivity
« Modularization and Information Hiding
— Supports maintainability, reuse
« Independence (abstract interfaces + IH)
— Classes designed as independent entities
— Supports readability, reuse, maintainability
« Common underlying model
— 0O model for analysis, design, and programming
— Supports unified development

CIS 422/522 Winter 2014

Some Design Goals

+ Be easy to make the following kinds of change
— Add additional fields to the entries: for example, fields

for someone's email, mobile phone, and business
phone

— Ability to edit the name fields at any time while keeping
the associated data

— As the number of entries gets larger, we will want to be
able to search the address book

+ Support subsets and extensions

— Produce a simpler version of the address book with
only names and phone #

— Allow user to keep multiple address books of different
kinds (i.e., different fields)

— Allow the user-defined fields

CIS 422/522 Winter 2014

CIS 422/522

A Decomposition Approach

CIS 422/522 Winter 2014

Decomposition Strategies Differ

* How do we develop this structure so that we
know the leaf modules make independent work
assignments?

+ Many ways to decompose hierarchically
— Functional: each module is a function

— Pipes and Filters: each module is a step in a chain of
processing

— Transactional: data transforming components
— Client/server
— Use-case driven development
+ But, these result in different kinds of
dependencies (strong coupling)

CIS 422/522 Winter 2014

Submodule-of Relation

To define the structure, need the relation and the

rule for constructing the relation

+ Relation: sub-module-of

* Rules

— If a module holds decisions that are likely to change
independently, then decompose it into submodules

— Don't stop until each module contains only things likely
to change together

— Anything that other modules should not depend on
ge:::”n;)e secrets of the module (e.g., implementation

e

— If the module has an interface, only things not likely to
change can be part of the interface

CIS 422/522 Winter 2014

CIS 422/522

Effects of Changes

Consider what happens to
communication among
module developers

Suppose we have groups of
requirements R1 — R3:

— R1 and R3 are related and

likely to change together
— R2is likely to change
independently
Suppose we put R1 and R2

in the same module and Interface Intertace
assign to different teams
— What happens when R1
changes?
- R2?

Suppose R1 and R3 are put
in the same module?

CIS 422/522 Winter 2014

Applied Information Hiding

The rule we just described is called the
information hiding principle

Design principle of limiting dependencies
between components by hiding information other
components should not depend on

An information hiding decomposition is one
following the design principles that:

— System details that are likely to change independently
are encapsulated in different modules

— The interface of a module reveals only those aspects
considered unlikely to change

CIS 422/522 Winter 2014

Design Principles

CIS 422/522 Winter 2014

Three Key Design Principles

» Address the basic issue: which constructs are
essential to the problem solution vs. which

can change
— “Fundamental assumptions”
— “Likely changes”

* Most solid first

+ Information hiding

+ Abstraction

CIS 422/522

CIS 422/522 Winter 2014

Principle: Most Solid First

+ View design as a sequence of decisions

— Later decisions depend on earlier

— Early decisions harder to change
Most solid first: in a sequence of decisions, those that
are least likely to change should be made first
+ Goal: reduce rework by limiting the impact of changes
Application: used to order a sequence of design
decisions

— Generally applicable to design decisions

— Module decomposition — ease of change

— Developing families — create most commonality

CIS 422/522 Winter 2014

Information Hiding

+ Information hiding: Design principle of limiting
dependencies between components by hiding
information other components should not
depend on

» An information hiding decomposition is one
following the design principles that (Parnas):
— System details that are likely to change
independently are encapsulated in different
modules
— The interface of a module reveals only those
aspects considered unlikely to change

CIS 422/522 Winter 2014

CIS 422/522

Abstraction

+ General: disassociating from specific
instances to represent what the instances
have in common
— Abstraction defines a one-to-many relationship

E.g., one type, many possible implementations

* Modular decomposition: Interface design
principle of providing only essential
information and suppressing unnecessary
detail

CIS 422/522 Winter 2014

Abstraction

+ Two primary uses
» Reduce Complexity
— Goal: manage complexity by reducing the amount of
information that must be considered at one time
— Approach: Separate information important to the problem at
hand from that which is not
- Abstraction suppresses or hides “irrelevant detail”
« Examples: stacks, queues, abstract device
* Model the problem domain
— Goal: leverage domain knowledge to simplify understanding,
creating, checking designs
— Approach: Provide components that make it easier to model
a class of problems
» May be quite general (e.g., type real, type float)
« May be very problem specific (e.g., class automobile, book object)

CIS 422/522 Winter 2014

Example: Simple Library Model

+ What are the abstractions?
+ What information is hidden?

CIS 422/522 Winter 2014 25

CIS 422/522

Module Hierarchy

Problem ~y_~

“Secrets” “Secrets” | —------= “Secrets”
Parent
“Secrets” “Secrets” | L ____.

,,,,,,,,,,, Leaf Modules =
Work
assignments

Interface Interface Interface Interface

—> Submodule-of relation
CIS 422/522 Winter 2014 26

Comments

» Applying heuristics does not guarantee
qualities

» Applying patterns requires understanding how
the pattern works

CIS 422/522 Winter 2014 27

